Common
Core APIs
Recipe
Recipe(self, *steps)Attributes
| Name | Description | 
|---|---|
| output_format | The output format to use for transform | 
Methods
| Name | Description | 
|---|---|
| fit | Fit a recipe. | 
| fit_transform | Fit and transform in one step. | 
| get_params | Get parameters for this recipe. | 
| is_fitted | Check if this recipe has already been fit. | 
| set_output | Set output type returned by transform. | 
| set_params | Set the parameters of this recipe. | 
| to_dask_dataframe | Transform X and return a dask.dataframe.DataFrame. | 
| to_dask_dmatrix | Transform X and return a xgboost.dask.DMatrix | 
| to_dmatrix | Transform X and return a xgboost.DMatrix | 
| to_ibis | Transform X and return an ibis table. | 
| to_numpy | Transform X and return a numpy.ndarray. | 
| to_pandas | Transform X and return a pandas.DataFrame. | 
| to_polars | Transform X and return a polars.DataFrame. | 
| to_pyarrow | Transform X and return a pyarrow.Table. | 
| to_pyarrow_batches | Transform X and return a pyarrow.RecordBatchReader. | 
| transform | Transform the data. | 
fit
fit(X, y=None)Fit a recipe.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | Training data. | required | 
| y | column - like | Training targets. | None | 
Returns
| Name | Type | Description | 
|---|---|---|
| self | Returns the same instance. | 
fit_transform
fit_transform(X, y=None)Fit and transform in one step.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | Training data. | required | 
| y | column - like | Training targets. | None | 
Returns
| Name | Type | Description | 
|---|---|---|
| Xt | Transformed training data. | 
get_params
get_params(deep=True)Get parameters for this recipe.
Returns the parameters given in the constructor as well as the steps contained within the steps of the Recipe.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| deep | bool | If True, will return the parameters for this recipe and contained steps. | True | 
Returns
| Name | Type | Description | 
|---|---|---|
| params | mapping of string to any | Parameter names mapped to their values. | 
Notes
Derived from [1]_.
References
.. [1] https://github.com/scikit-learn/scikit-learn/blob/ee5a1b6/sklearn/utils/metaestimators.py#L30-L50
is_fitted
is_fitted()Check if this recipe has already been fit.
set_output
set_output(transform=None)Set output type returned by transform.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| transform | ('default', 'pandas') | Configure output of transform and fit_transform. - "default": Default output format of a transformer - "pandas": Pandas dataframe - "polars": Polars dataframe - "pyarrow": PyArrow table - None: Transform configuration is unchanged | 
"default" | 
set_params
set_params(**params)Set the parameters of this recipe.
Valid parameter keys can be listed with get_params(). Note that you can directly set the parameters of the steps contained in steps.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| **params | dict | Parameters of this recipe or parameters of steps contained in steps. Parameters of the steps may be set using its name and the parameter name separated by a ’__’. | 
{} | 
Returns
| Name | Type | Description | 
|---|---|---|
| self | object | Recipe class instance. | 
Notes
Derived from [1]_ and [2]_.
References
.. [1] https://github.com/scikit-learn/scikit-learn/blob/ff1c6f3/sklearn/utils/metaestimators.py#L51-L70 .. [2] https://github.com/scikit-learn/scikit-learn/blob/74016ab/sklearn/base.py#L214-L256
to_dask_dataframe
to_dask_dataframe(X, categories=False)Transform X and return a dask.dataframe.DataFrame.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
| categories | bool | Whether to return any categorical columns as dask categorical series. If False (the default) these columns will be returned as numeric columns containing only their integral categorical codes. | False | 
to_dask_dmatrix
to_dask_dmatrix(X)Transform X and return a xgboost.dask.DMatrix
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
to_dmatrix
to_dmatrix(X)Transform X and return a xgboost.DMatrix
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
to_ibis
to_ibis(X)Transform X and return an ibis table.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
to_numpy
to_numpy(X)Transform X and return a numpy.ndarray.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
to_pandas
to_pandas(X, categories=False)Transform X and return a pandas.DataFrame.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
| categories | bool | Whether to return any categorical columns as pandas categorical series. If False (the default) these columns will be returned as numeric columns containing only their integral categorical codes. | False | 
to_polars
to_polars(X)Transform X and return a polars.DataFrame.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
to_pyarrow
to_pyarrow(X, categories=False)Transform X and return a pyarrow.Table.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
| categories | bool | Whether to return any categorical columns as dictionary-encoded columns. If False (the default) these columns will be returned as numeric columns containing only their integral categorical codes. | False | 
to_pyarrow_batches
to_pyarrow_batches(X, categories=False)Transform X and return a pyarrow.RecordBatchReader.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | The input data to transform. | required | 
| categories | bool | Whether to return any categorical columns as dictionary-encoded columns. If False (the default) these columns will be returned as numeric columns containing only their integral categorical codes. | False | 
transform
transform(X)Transform the data.
Parameters
| Name | Type | Description | Default | 
|---|---|---|---|
| X | table - like | Data to transform. | required | 
Returns
| Name | Type | Description | 
|---|---|---|
| Xt | Transformed data. |