Impala¶
One goal of Ibis is to provide an integrated Python API for an Impala cluster without requiring you to switch back and forth between Python code and the Impala shell.
ibis.memtable
Support ¶
The Impala backend supports memtable
s by constructing a string with the contents of the in-memory object. This will be very inefficient for medium to large in-memory tables. Please file an issue if you observe performance issues when using in-memory tables.
Install¶
Install ibis
and dependencies for the Impala backend:
pip install 'ibis-framework[impala]'
conda install -c conda-forge ibis-impala
mamba install -c conda-forge ibis-impala
Connect¶
API¶
Create a client by passing in connection parameters to ibis.impala.connect
.
See ibis.backends.impala.Backend.do_connect
for connection parameter information.
ibis.impala.connect
is a thin wrapper around ibis.backends.impala.Backend.do_connect
.
Connection Parameters¶
do_connect(host='localhost', port=21050, database='default', timeout=45, use_ssl=False, ca_cert=None, user=None, password=None, auth_mechanism='NOSASL', kerberos_service_name='impala', pool_size=8, hdfs_client=None)
¶
Create an Impala Backend for use with Ibis.
Parameters:
Name | Type | Description | Default | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
host |
str
|
Host name of the impalad or HiveServer2 in Hive |
'localhost'
|
||||||||||
port |
int
|
Impala's HiveServer2 port |
21050
|
||||||||||
database |
str
|
Default database when obtaining new cursors |
'default'
|
||||||||||
timeout |
int
|
Connection timeout in seconds when communicating with HiveServer2 |
45
|
||||||||||
use_ssl |
bool
|
Use SSL when connecting to HiveServer2 |
False
|
||||||||||
ca_cert |
str | Path | None
|
Local path to 3rd party CA certificate or copy of server
certificate for self-signed certificates. If SSL is enabled, but
this argument is |
None
|
||||||||||
user |
str | None
|
LDAP user to authenticate |
None
|
||||||||||
password |
str | None
|
LDAP password to authenticate |
None
|
||||||||||
auth_mechanism |
Literal['NOSASL', 'PLAIN', 'GSSAPI', 'LDAP']
|
|
'NOSASL'
|
||||||||||
kerberos_service_name |
str
|
Specify a particular |
'impala'
|
||||||||||
pool_size |
int
|
Size of the connection pool. Typically this is not necessary to configure. |
8
|
||||||||||
hdfs_client |
fsspec.spec.AbstractFileSystem | None
|
An existing HDFS client. |
None
|
Examples:
>>> import os
>>> import ibis
>>> hdfs_host = os.environ.get('IBIS_TEST_NN_HOST', 'localhost')
>>> hdfs_port = int(os.environ.get('IBIS_TEST_NN_PORT', 50070))
>>> impala_host = os.environ.get('IBIS_TEST_IMPALA_HOST', 'localhost')
>>> impala_port = int(os.environ.get('IBIS_TEST_IMPALA_PORT', 21050))
>>> hdfs = ibis.impala.hdfs_connect(host=hdfs_host, port=hdfs_port)
>>> client = ibis.impala.connect(
... host=impala_host,
... port=impala_port,
... hdfs_client=hdfs,
... )
>>> client
<ibis.backends.impala.Backend object at 0x...>
Both method calls can take auth_mechanism='GSSAPI'
or auth_mechanism='LDAP'
to connect to Kerberos clusters. Depending on your cluster setup, this may also
include SSL. See the API reference
for more, along with the Impala shell
reference, as the connection semantics are identical.
These methods are available on the Impala client object after connecting to
your HDFS cluster (ibis.impala.hdfs_connect
) and connecting to Impala with
ibis.impala.connect
. See backends.impala
for a tutorial on using this
backend.
Database methods¶
Backend
¶
Bases: BaseSQLBackend
Functions¶
create_database(name, path=None, force=False)
¶
Create a new Impala database.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Database name |
required | |
path |
HDFS path where to store the database data; otherwise uses Impala default |
None
|
|
force |
Forcibly create the database |
False
|
drop_database(name, force=False)
¶
Drop an Impala database.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Database name |
required | |
force |
If False and there are any tables in this database, raises an IntegrityError |
False
|
list_databases(like=None)
¶
Table methods¶
The Backend
object itself has many helper utility methods. You'll
find the most methods on ImpalaTable
.
Backend
¶
Bases: BaseSQLBackend
Functions¶
table(name, database=None, **kwargs)
¶
list_tables(like=None, database=None)
¶
drop_table(name, *, database=None, force=False)
¶
Drop an Impala table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Table name |
required |
database |
str | None
|
Database name |
None
|
force |
bool
|
Database may throw exception if table does not exist |
False
|
Examples:
>>> table = 'my_table'
>>> db = 'operations'
>>> con.drop_table(table, database=db, force=True)
create_table(name, obj=None, *, schema=None, database=None, temp=None, overwrite=False, external=False, format='parquet', location=None, partition=None, like_parquet=None)
¶
Create a new table in Impala using an Ibis table expression.
This is currently designed for tables whose data is stored in HDFS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Table name |
required |
obj |
ir.Table | None
|
If passed, creates table from select statement results |
None
|
schema |
Mutually exclusive with obj, creates an empty table with a particular schema |
None
|
|
database |
Database name |
None
|
|
temp |
bool | None
|
Whether a table is temporary |
None
|
overwrite |
bool
|
Do not create table if table with indicated name already exists |
False
|
external |
bool
|
Create an external table; Impala will not delete the underlying data when the table is dropped |
False
|
format |
File format |
'parquet'
|
|
location |
Specify the directory location where Impala reads and writes files for the table |
None
|
|
partition |
Must pass a schema to use this. Cannot partition from an expression. |
None
|
|
like_parquet |
Can specify instead of a schema |
None
|
insert(table_name, obj=None, database=None, overwrite=False, partition=None, values=None, validate=True)
¶
Insert data into an existing table.
See
ImpalaTable.insert
for parameters.
Examples:
>>> table = 'my_table'
>>> con.insert(table, table_expr)
Completely overwrite contents
>>> con.insert(table, table_expr, overwrite=True)
invalidate_metadata(name=None, database=None)
¶
truncate_table(name, database=None)
¶
get_schema(table_name, database=None)
¶
cache_table(table_name, *, database=None, pool='default')
¶
Caches a table in cluster memory in the given pool.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table_name |
Table name |
required | |
database |
Database name |
None
|
|
pool |
The name of the pool in which to cache the table |
'default'
|
Examples:
>>> table = 'my_table'
>>> db = 'operations'
>>> pool = 'op_4GB_pool'
>>> con.cache_table('my_table', database=db, pool=pool)
get_options()
¶
Return current query options for the Impala session.
set_options(options)
¶
set_compression_codec(codec)
¶
The best way to interact with a single table is through the
ImpalaTable
object you get back from Backend.table
.
ImpalaTable
¶
Bases: ir.Table
A physical table in the Impala-Hive metastore.
Attributes¶
describe_formatted = metadata
class-attribute
instance-attribute
¶
is_partitioned
property
¶
True if the table is partitioned.
Functions¶
add_partition(spec, location=None)
¶
Add a new table partition.
This API creates any necessary new directories in HDFS.
Partition parameters can be set in a single DDL statement or you can
use alter_partition
to set them after the fact.
alter(location=None, format=None, tbl_properties=None, serde_properties=None)
¶
Change settings and parameters of the table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
location |
For partitioned tables, you may want the alter_partition function |
None
|
|
format |
Table format |
None
|
|
tbl_properties |
Table properties |
None
|
|
serde_properties |
Serialization/deserialization properties |
None
|
alter_partition(spec, location=None, format=None, tbl_properties=None, serde_properties=None)
¶
Change settings and parameters of an existing partition.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spec |
The partition keys for the partition being modified |
required | |
location |
Location of the partition |
None
|
|
format |
Table format |
None
|
|
tbl_properties |
Table properties |
None
|
|
serde_properties |
Serialization/deserialization properties |
None
|
column_stats()
¶
Return results of SHOW COLUMN STATS
.
Returns:
Type | Description |
---|---|
DataFrame
|
Column statistics |
compute_stats(incremental=False)
¶
Invoke Impala COMPUTE STATS command on the table.
drop()
¶
Drop the table from the database.
drop_partition(spec)
¶
Drop an existing table partition.
files()
¶
Return results of SHOW FILES statement.
insert(obj=None, overwrite=False, partition=None, values=None, validate=True)
¶
Insert into an Impala table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj |
Table expression or DataFrame |
None
|
|
overwrite |
If True, will replace existing contents of table |
False
|
|
partition |
For partitioned tables, indicate the partition that's being inserted into, either with an ordered list of partition keys or a dict of partition field name to value. For example for the partition (year=2007, month=7), this can be either (2007, 7) or {'year': 2007, 'month': 7}. |
None
|
|
values |
Unsupported and unused |
None
|
|
validate |
If True, do more rigorous validation that schema of table being inserted is compatible with the existing table |
True
|
Examples:
>>> t.insert(table_expr)
Completely overwrite contents
>>> t.insert(table_expr, overwrite=True)
invalidate_metadata()
¶
load_data(path, overwrite=False, partition=None)
¶
Load data into an Impala table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Data to load |
required | |
overwrite |
Overwrite the existing data in the entire table or indicated partition |
False
|
|
partition |
If specified, the partition must already exist |
None
|
metadata()
¶
Return results of DESCRIBE FORMATTED
statement.
partition_schema()
¶
Return the schema for the partition columns.
partitions()
¶
Return information about the table's partitions.
Raises an exception if the table is not partitioned.
refresh()
¶
rename(new_name, database=None)
¶
Rename table inside Impala.
References to the old table are no longer valid.
stats()
¶
Return results of SHOW TABLE STATS
.
If not partitioned, contains only one row.
Returns:
Type | Description |
---|---|
DataFrame
|
Table statistics |
Creating views¶
Backend
¶
Bases: BaseSQLBackend
Accessing data formats in HDFS¶
Backend
¶
Bases: BaseSQLBackend
Functions¶
delimited_file(hdfs_dir, schema, name=None, database=None, delimiter=',', na_rep=None, escapechar=None, lineterminator=None, external=True, persist=False)
¶
Interpret delimited text files as an Ibis table expression.
See the parquet_file
method for more details on what happens under
the hood.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hdfs_dir |
HDFS directory containing delimited text files |
required | |
schema |
Ibis schema |
required | |
name |
Name for temporary or persistent table; otherwise random names are generated |
None
|
|
database |
Database to create the table in |
None
|
|
delimiter |
Character used to delimit columns |
','
|
|
na_rep |
Character used to represent NULL values |
None
|
|
escapechar |
Character used to escape special characters |
None
|
|
lineterminator |
Character used to delimit lines |
None
|
|
external |
Create table as EXTERNAL (data will not be deleted on drop). Not that if persist=False and external=False, whatever data you reference will be deleted |
True
|
|
persist |
If True, do not delete the table upon garbage collection of ibis table object |
False
|
Returns:
Type | Description |
---|---|
ImpalaTable
|
Impala table expression |
parquet_file(hdfs_dir, schema=None, name=None, database=None, external=True, like_file=None, like_table=None, persist=False)
¶
Make indicated parquet file in HDFS available as an Ibis table.
The table created can be optionally named and persisted, otherwise a unique name will be generated. Temporarily, for any non-persistent external table created by Ibis we will attempt to drop it when the underlying object is garbage collected (or the Python interpreter shuts down normally).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hdfs_dir |
Path in HDFS |
required | |
schema |
If no schema provided, and neither of the like_* argument is passed, one will be inferred from one of the parquet files in the directory. |
None
|
|
like_file |
Absolute path to Parquet file in HDFS to use for schema definitions. An alternative to having to supply an explicit schema |
None
|
|
like_table |
Fully scoped and escaped string to an Impala table whose schema we will use for the newly created table. |
None
|
|
name |
Random unique name generated otherwise |
None
|
|
database |
Database to create the (possibly temporary) table in |
None
|
|
external |
If a table is external, the referenced data will not be deleted when the table is dropped in Impala. Otherwise (external=False) Impala takes ownership of the Parquet file. |
True
|
|
persist |
Do not drop the table during garbage collection |
False
|
Returns:
Type | Description |
---|---|
ImpalaTable
|
Impala table expression |
avro_file(hdfs_dir, avro_schema, name=None, database=None, external=True, persist=False)
¶
Create a table to read a collection of Avro data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hdfs_dir |
Absolute HDFS path to directory containing avro files |
required | |
avro_schema |
The Avro schema for the data as a Python dict |
required | |
name |
Table name |
None
|
|
database |
Database name |
None
|
|
external |
Whether the table is external |
True
|
|
persist |
Persist the table |
False
|
Returns:
Type | Description |
---|---|
ImpalaTable
|
Impala table expression |
HDFS Interaction¶
Ibis delegates all HDFS interaction to the
fsspec
library.
The Impala client object¶
To use Ibis with Impala, you first must connect to a cluster using the
ibis.impala.connect
function, optionally supplying an HDFS connection:
import ibis
hdfs = ibis.impala.hdfs_connect(host=webhdfs_host, port=webhdfs_port)
client = ibis.impala.connect(host=impala_host, port=impala_port, hdfs_client=hdfs)
All examples here use the following block of code to connect to impala using docker:
import ibis
hdfs = ibis.impala.hdfs_connect(host="localhost", port=50070)
client = ibis.impala.connect(host=host, hdfs_client=hdfs)
You can accomplish many tasks directly through the client object, but we additionally provide APIs to streamline tasks involving a single Impala table or database.
Table objects¶
table(name, database=None)
¶
The client's table
method allows you to create an Ibis table
expression referencing a physical Impala table:
table = client.table('functional_alltypes', database='ibis_testing')
ImpalaTable
is a Python subclass of the more general Ibis Table
that has additional Impala-specific methods. So you can use it
interchangeably with any code expecting a Table
.
Like all table expressions in Ibis, ImpalaTable
has a schema
method
you can use to examine its schema:
ImpalaTable
¶
Bases: ir.Table
A physical table in the Impala-Hive metastore.
While the client has a drop_table
method you can use to drop tables,
the table itself has a method drop
that you can use:
table.drop()
Expression execution¶
Ibis expressions have execution methods like to_pandas
that compile and run the
expressions on Impala or whichever backend is being referenced.
For example:
>>> fa = db.functional_alltypes
>>> expr = fa.double_col.sum()
>>> expr.to_pandas()
331785.00000000006
For longer-running queries, Ibis will attempt to cancel the query in progress if an interrupt is received.
Creating tables¶
There are several ways to create new Impala tables:
- From an Ibis table expression
- Empty, from a declared schema
- Empty and partitioned
In all cases, you should use the create_table
method either on the
top-level client connection or a database object.
create_table(name, obj=None, *, schema=None, database=None, temp=None, overwrite=False, external=False, format='parquet', location=None, partition=None, like_parquet=None)
¶
Create a new table in Impala using an Ibis table expression.
This is currently designed for tables whose data is stored in HDFS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Table name |
required |
obj |
ir.Table | None
|
If passed, creates table from select statement results |
None
|
schema |
Mutually exclusive with obj, creates an empty table with a particular schema |
None
|
|
database |
Database name |
None
|
|
temp |
bool | None
|
Whether a table is temporary |
None
|
overwrite |
bool
|
Do not create table if table with indicated name already exists |
False
|
external |
bool
|
Create an external table; Impala will not delete the underlying data when the table is dropped |
False
|
format |
File format |
'parquet'
|
|
location |
Specify the directory location where Impala reads and writes files for the table |
None
|
|
partition |
Must pass a schema to use this. Cannot partition from an expression. |
None
|
|
like_parquet |
Can specify instead of a schema |
None
|
Creating tables from a table expression¶
If you pass an Ibis expression to create_table
, Ibis issues a
CREATE TABLE ... AS SELECT
(CTAS) statement:
>>> table = db.table('functional_alltypes')
>>> expr = table.group_by('string_col').size()
>>> db.create_table('string_freqs', expr, format='parquet')
>>> freqs = db.table('string_freqs')
>>> freqs.to_pandas()
string_col count
0 9 730
1 3 730
2 6 730
3 4 730
4 1 730
5 8 730
6 2 730
7 7 730
8 5 730
9 0 730
>>> files = freqs.files()
>>> files
Path Size Partition
0 hdfs://impala:8020/user/hive/warehouse/ibis_te... 584B
>>> freqs.drop()
You can also choose to create an empty table and use insert
(see
below).
Creating an empty table¶
To create an empty table, you must declare an Ibis schema that will be translated to the appropriate Impala schema and data types.
As Ibis types are simplified compared with Impala types, this may expand in the future to include a more fine-grained schema declaration.
You can use the create_table
method either on a database or client
object.
schema = ibis.schema([('foo', 'string'),
('year', 'int32'),
('month', 'int16')])
name = 'new_table'
db.create_table(name, schema=schema)
By default, this stores the data files in the database default location.
You can force a particular path with the location
option.
from getpass import getuser
schema = ibis.schema([('foo', 'string'),
('year', 'int32'),
('month', 'int16')])
name = 'new_table'
location = '/home/{}/new-table-data'.format(getuser())
db.create_table(name, schema=schema, location=location)
If the schema matches a known table schema, you can always use the
schema
method to get a schema object:
>>> t = db.table('functional_alltypes')
>>> t.schema()
ibis.Schema {
id int32
bool_col boolean
tinyint_col int8
smallint_col int16
int_col int32
bigint_col int64
float_col float32
double_col float64
date_string_col string
string_col string
timestamp_col timestamp
year int32
month int32
}
Creating a partitioned table¶
To create an empty partitioned table, include a list of columns to be used as the partition keys.
schema = ibis.schema([('foo', 'string'),
('year', 'int32'),
('month', 'int16')])
name = 'new_table'
db.create_table(name, schema=schema, partition=['year', 'month'])
Partitioned tables¶
Ibis enables you to manage partitioned tables in various ways. Since each partition behaves as its own \"subtable\" sharing a common schema, each partition can have its own file format, directory path, serialization properties, and so forth.
There are a handful of table methods for adding and removing partitions and getting information about the partition schema and any existing partition data:
ImpalaTable
¶
Bases: ir.Table
A physical table in the Impala-Hive metastore.
Attributes¶
is_partitioned
property
¶
True if the table is partitioned.
Functions¶
add_partition(spec, location=None)
¶
Add a new table partition.
This API creates any necessary new directories in HDFS.
Partition parameters can be set in a single DDL statement or you can
use alter_partition
to set them after the fact.
drop_partition(spec)
¶
Drop an existing table partition.
partition_schema()
¶
Return the schema for the partition columns.
partitions()
¶
Return information about the table's partitions.
Raises an exception if the table is not partitioned.
To address a specific partition in any method that is partition specific, you can either use a dict with the partition key names and values, or pass a list of the partition values:
schema = ibis.schema([('foo', 'string'),
('year', 'int32'),
('month', 'int16')])
name = 'new_table'
db.create_table(name, schema=schema, partition=['year', 'month'])
table = db.table(name)
table.add_partition({'year': 2007, 'month', 4})
table.add_partition([2007, 5])
table.add_partition([2007, 6])
table.drop_partition([2007, 6])
We'll cover partition metadata management and data loading below.
Inserting data into tables¶
If the schemas are compatible, you can insert into a table directly from an Ibis table expression:
>>> t = db.functional_alltypes
>>> db.create_table('insert_test', schema=t.schema())
>>> target = db.table('insert_test')
>>> target.insert(t[:3])
>>> target.insert(t[:3])
>>> target.insert(t[:3])
>>> target.to_pandas()
id bool_col tinyint_col ... timestamp_col year month
0 5770 True 0 ... 2010-08-01 00:00:00.000 2010 8
1 5771 False 1 ... 2010-08-01 00:01:00.000 2010 8
2 5772 True 2 ... 2010-08-01 00:02:00.100 2010 8
3 5770 True 0 ... 2010-08-01 00:00:00.000 2010 8
4 5771 False 1 ... 2010-08-01 00:01:00.000 2010 8
5 5772 True 2 ... 2010-08-01 00:02:00.100 2010 8
6 5770 True 0 ... 2010-08-01 00:00:00.000 2010 8
7 5771 False 1 ... 2010-08-01 00:01:00.000 2010 8
8 5772 True 2 ... 2010-08-01 00:02:00.100 2010 8
[9 rows x 13 columns]
>>> target.drop()
If the table is partitioned, you must indicate the partition you are inserting into:
part = {'year': 2007, 'month': 4}
table.insert(expr, partition=part)
Managing table metadata¶
Ibis has functions that wrap many of the DDL commands for Impala table metadata.
Detailed table metadata: DESCRIBE FORMATTED
¶
To get a handy wrangled version of DESCRIBE FORMATTED
use the
metadata
method.
metadata()
¶
Return results of DESCRIBE FORMATTED
statement.
>>> t = client.table('ibis_testing.functional_alltypes')
>>> meta = t.metadata()
>>> meta
<class 'ibis.backends.impala.metadata.TableMetadata'>
{'info': {'CreateTime': datetime.datetime(2021, 1, 14, 21, 23, 8),
'Database': 'ibis_testing',
'LastAccessTime': 'UNKNOWN',
'Location': 'hdfs://impala:8020/__ibis/ibis-testing-data/parquet/functional_alltypes',
'Owner': 'root',
'Protect Mode': 'None',
'Retention': 0,
'Table Parameters': {'COLUMN_STATS_ACCURATE': False,
'EXTERNAL': True,
'STATS_GENERATED_VIA_STATS_TASK': True,
'numFiles': 3,
'numRows': 7300,
'rawDataSize': '-1',
'totalSize': 106278,
'transient_lastDdlTime': datetime.datetime(2021, 1, 14, 21, 23, 17)},
'Table Type': 'EXTERNAL_TABLE'},
'schema': [('id', 'int'),
('bool_col', 'boolean'),
('tinyint_col', 'tinyint'),
('smallint_col', 'smallint'),
('int_col', 'int'),
('bigint_col', 'bigint'),
('float_col', 'float'),
('double_col', 'double'),
('date_string_col', 'string'),
('string_col', 'string'),
('timestamp_col', 'timestamp'),
('year', 'int'),
('month', 'int')],
'storage info': {'Bucket Columns': '[]',
'Compressed': False,
'InputFormat': 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat',
'Num Buckets': 0,
'OutputFormat': 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat',
'SerDe Library': 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe',
'Sort Columns': '[]'}}
>>> meta.location
'hdfs://impala:8020/__ibis/ibis-testing-data/parquet/functional_alltypes'
>>> meta.create_time
datetime.datetime(2021, 1, 14, 21, 23, 8)
The files
function is also available to see all of the physical HDFS
data files backing a table:
ImpalaTable
¶
>>> ss = c.table('tpcds_parquet.store_sales')
>>> ss.files()[:5]
path size \
0 hdfs://localhost:20500/test-warehouse/tpcds.st... 160.61KB
1 hdfs://localhost:20500/test-warehouse/tpcds.st... 123.88KB
2 hdfs://localhost:20500/test-warehouse/tpcds.st... 139.28KB
3 hdfs://localhost:20500/test-warehouse/tpcds.st... 139.60KB
4 hdfs://localhost:20500/test-warehouse/tpcds.st... 62.84KB
partition
0 ss_sold_date_sk=2451803
1 ss_sold_date_sk=2451819
2 ss_sold_date_sk=2451772
3 ss_sold_date_sk=2451789
4 ss_sold_date_sk=2451741
Modifying table metadata¶
For unpartitioned tables, you can use the alter
method to change its
location, file format, and other properties. For partitioned tables, to
change partition-specific metadata use alter_partition
.
ImpalaTable
¶
Bases: ir.Table
A physical table in the Impala-Hive metastore.
Functions¶
alter(location=None, format=None, tbl_properties=None, serde_properties=None)
¶
Change settings and parameters of the table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
location |
For partitioned tables, you may want the alter_partition function |
None
|
|
format |
Table format |
None
|
|
tbl_properties |
Table properties |
None
|
|
serde_properties |
Serialization/deserialization properties |
None
|
alter_partition(spec, location=None, format=None, tbl_properties=None, serde_properties=None)
¶
Change settings and parameters of an existing partition.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spec |
The partition keys for the partition being modified |
required | |
location |
Location of the partition |
None
|
|
format |
Table format |
None
|
|
tbl_properties |
Table properties |
None
|
|
serde_properties |
Serialization/deserialization properties |
None
|
For example, if you wanted to \"point\" an existing table at a directory of CSV files, you could run the following command:
from getpass import getuser
csv_props = {
'serialization.format': ',',
'field.delim': ',',
}
data_dir = '/home/{}/my-csv-files'.format(getuser())
table.alter(location=data_dir, format='text', serde_properties=csv_props)
If the table is partitioned, you can modify only the properties of a particular partition:
table.alter_partition(
{'year': 2007, 'month': 5},
location=data_dir,
format='text',
serde_properties=csv_props
)
Table statistics¶
Computing table and partition statistics¶
ImpalaTable
¶
Impala-backed physical tables have a method compute_stats
that
computes table, column, and partition-level statistics to assist with
query planning and optimization. It is standard practice to invoke this
after creating a table or loading new data:
table.compute_stats()
If you are using a recent version of Impala, you can also access the
COMPUTE INCREMENTAL STATS
DDL command:
table.compute_stats(incremental=True)
Seeing table and column statistics¶
ImpalaTable
¶
Bases: ir.Table
A physical table in the Impala-Hive metastore.
The compute_stats
and stats
functions return the results of
SHOW COLUMN STATS
and SHOW TABLE STATS
, respectively, and their
output will depend, of course, on the last COMPUTE STATS
call.
>>> ss = c.table('tpcds_parquet.store_sales')
>>> ss.compute_stats(incremental=True)
>>> stats = ss.stats()
>>> stats[:5]
ss_sold_date_sk #Rows #Files Size Bytes Cached Cache Replication \
0 2450829 1071 1 78.34KB NOT CACHED NOT CACHED
1 2450846 839 1 61.83KB NOT CACHED NOT CACHED
2 2450860 747 1 54.86KB NOT CACHED NOT CACHED
3 2450874 922 1 66.74KB NOT CACHED NOT CACHED
4 2450888 856 1 63.33KB NOT CACHED NOT CACHED
Format Incremental stats \
0 PARQUET true
1 PARQUET true
2 PARQUET true
3 PARQUET true
4 PARQUET true
Location
0 hdfs://localhost:20500/test-warehouse/tpcds.st...
1 hdfs://localhost:20500/test-warehouse/tpcds.st...
2 hdfs://localhost:20500/test-warehouse/tpcds.st...
3 hdfs://localhost:20500/test-warehouse/tpcds.st...
4 hdfs://localhost:20500/test-warehouse/tpcds.st...
>>> cstats = ss.column_stats()
>>> cstats
Column Type #Distinct Values #Nulls Max Size Avg Size
0 ss_sold_time_sk BIGINT 13879 -1 NaN 8
1 ss_item_sk BIGINT 17925 -1 NaN 8
2 ss_customer_sk BIGINT 15207 -1 NaN 8
3 ss_cdemo_sk BIGINT 16968 -1 NaN 8
4 ss_hdemo_sk BIGINT 6220 -1 NaN 8
5 ss_addr_sk BIGINT 14077 -1 NaN 8
6 ss_store_sk BIGINT 6 -1 NaN 8
7 ss_promo_sk BIGINT 298 -1 NaN 8
8 ss_ticket_number INT 15006 -1 NaN 4
9 ss_quantity INT 99 -1 NaN 4
10 ss_wholesale_cost DECIMAL(7,2) 10196 -1 NaN 4
11 ss_list_price DECIMAL(7,2) 19393 -1 NaN 4
12 ss_sales_price DECIMAL(7,2) 15594 -1 NaN 4
13 ss_ext_discount_amt DECIMAL(7,2) 29772 -1 NaN 4
14 ss_ext_sales_price DECIMAL(7,2) 102758 -1 NaN 4
15 ss_ext_wholesale_cost DECIMAL(7,2) 125448 -1 NaN 4
16 ss_ext_list_price DECIMAL(7,2) 141419 -1 NaN 4
17 ss_ext_tax DECIMAL(7,2) 33837 -1 NaN 4
18 ss_coupon_amt DECIMAL(7,2) 29772 -1 NaN 4
19 ss_net_paid DECIMAL(7,2) 109981 -1 NaN 4
20 ss_net_paid_inc_tax DECIMAL(7,2) 132286 -1 NaN 4
21 ss_net_profit DECIMAL(7,2) 122436 -1 NaN 4
22 ss_sold_date_sk BIGINT 120 0 NaN 8
REFRESH
and INVALIDATE METADATA
¶
These DDL commands are available as table-level and client-level methods:
Backend
¶
Bases: BaseSQLBackend
ImpalaTable
¶
You can invalidate the cached metadata for a single table or for all
tables using invalidate_metadata
, and similarly invoke
REFRESH db_name.table_name
using the refresh
method.
client.invalidate_metadata()
table = db.table(table_name)
table.invalidate_metadata()
table.refresh()
These methods are often used in conjunction with the LOAD DATA
commands and COMPUTE STATS
. See the Impala documentation for full
details.
Issuing LOAD DATA
commands¶
The LOAD DATA
DDL physically moves a single data file or a directory
of files into the correct location for a table or table partition. It is
especially useful for partitioned tables as you do not have to construct
the directory path for a partition by hand, so simpler and less
error-prone than manually moving files with low level HDFS commands. It
also deals with file name conflicts so data is not lost in such cases.
Backend
¶
Bases: BaseSQLBackend
ImpalaTable
¶
Bases: ir.Table
A physical table in the Impala-Hive metastore.
Functions¶
load_data(path, overwrite=False, partition=None)
¶
Load data into an Impala table.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Data to load |
required | |
overwrite |
Overwrite the existing data in the entire table or indicated partition |
False
|
|
partition |
If specified, the partition must already exist |
None
|
To use these methods, pass the path of a single file or a directory of files you want to load. Afterward, you may want to update the table statistics (see Impala documentation):
table.load_data(path)
table.refresh()
Like the other methods with support for partitioned tables, you can load
into a particular partition with the partition
keyword argument:
part = [2007, 5]
table.load_data(path, partition=part)
Parquet and other session options¶
Ibis gives you access to Impala session-level variables that affect query execution:
Backend
¶
Bases: BaseSQLBackend
Functions¶
disable_codegen(disabled=True)
¶
Turn off or on LLVM codegen in Impala query execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
disabled |
To disable codegen, pass with no argument or True. To enable codegen, pass False. |
True
|
get_options()
¶
Return current query options for the Impala session.
set_options(options)
¶
set_compression_codec(codec)
¶
For example:
>>> client.get_options()
{'ABORT_ON_ERROR': '0',
'APPX_COUNT_DISTINCT': '0',
'BUFFER_POOL_LIMIT': '',
'COMPRESSION_CODEC': '',
'COMPUTE_STATS_MIN_SAMPLE_SIZE': '1073741824',
'DEFAULT_JOIN_DISTRIBUTION_MODE': '0',
'DEFAULT_SPILLABLE_BUFFER_SIZE': '2097152',
'DISABLE_CODEGEN': '0',
'DISABLE_CODEGEN_ROWS_THRESHOLD': '50000',
'DISABLE_ROW_RUNTIME_FILTERING': '0',
'DISABLE_STREAMING_PREAGGREGATIONS': '0',
'DISABLE_UNSAFE_SPILLS': '0',
'ENABLE_EXPR_REWRITES': '1',
'EXEC_SINGLE_NODE_ROWS_THRESHOLD': '100',
'EXEC_TIME_LIMIT_S': '0',
'EXPLAIN_LEVEL': '1',
'HBASE_CACHE_BLOCKS': '0',
'HBASE_CACHING': '0',
'IDLE_SESSION_TIMEOUT': '0',
'MAX_ERRORS': '100',
'MAX_NUM_RUNTIME_FILTERS': '10',
'MAX_ROW_SIZE': '524288',
'MEM_LIMIT': '0',
'MIN_SPILLABLE_BUFFER_SIZE': '65536',
'MT_DOP': '',
'NUM_SCANNER_THREADS': '0',
'OPTIMIZE_PARTITION_KEY_SCANS': '0',
'PARQUET_ANNOTATE_STRINGS_UTF8': '0',
'PARQUET_ARRAY_RESOLUTION': '2',
'PARQUET_DICTIONARY_FILTERING': '1',
'PARQUET_FALLBACK_SCHEMA_RESOLUTION': '0',
'PARQUET_FILE_SIZE': '0',
'PARQUET_READ_STATISTICS': '1',
'PREFETCH_MODE': '1',
'QUERY_TIMEOUT_S': '0',
'REPLICA_PREFERENCE': '0',
'REQUEST_POOL': '',
'RUNTIME_BLOOM_FILTER_SIZE': '1048576',
'RUNTIME_FILTER_MAX_SIZE': '16777216',
'RUNTIME_FILTER_MIN_SIZE': '1048576',
'RUNTIME_FILTER_MODE': '2',
'RUNTIME_FILTER_WAIT_TIME_MS': '0',
'S3_SKIP_INSERT_STAGING': '1',
'SCHEDULE_RANDOM_REPLICA': '0',
'SCRATCH_LIMIT': '-1',
'SEQ_COMPRESSION_MODE': '',
'SYNC_DDL': '0'}
To enable Snappy compression for Parquet files, you could do either of:
>>> client.set_options({'COMPRESSION_CODEC': 'snappy'})
>>> client.set_compression_codec('snappy')
>>> client.get_options()['COMPRESSION_CODEC']
'SNAPPY'
Ingesting data from pandas¶
Overall interoperability between the Hadoop / Spark ecosystems and pandas / the PyData stack is poor, but it will improve in time (this is a major part of the Ibis roadmap).
Ibis's Impala tools currently interoperate with pandas in these ways:
- Ibis expressions return pandas objects (i.e. DataFrame or Series)
for non-scalar expressions when calling their
to_pandas
method - The
create_table
andinsert
methods can accept pandas objects. This includes inserting into partitioned tables. It currently uses CSV as the ingest route.
For example:
>>> import pandas as pd
>>> data = pd.DataFrame({'foo': [1, 2, 3, 4], 'bar': ['a', 'b', 'c', 'd']})
>>> db.create_table('pandas_table', data)
>>> t = db.pandas_table
>>> t.to_pandas()
bar foo
0 a 1
1 b 2
2 c 3
3 d 4
>>> t.drop()
>>> db.create_table('empty_for_insert', schema=t.schema())
>>> to_insert = db.empty_for_insert
>>> to_insert.insert(data)
>>> to_insert.to_pandas()
bar foo
0 a 1
1 b 2
2 c 3
3 d 4
>>> to_insert.drop()
>>> import pandas as pd
>>> data = pd.DataFrame({'foo': [1, 2, 3, 4], 'bar': ['a', 'b', 'c', 'd']})
>>> db.create_table('pandas_table', data)
>>> t = db.pandas_table
>>> t.to_pandas()
foo bar
0 1 a
1 2 b
2 3 c
3 4 d
>>> t.drop()
>>> db.create_table('empty_for_insert', schema=t.schema())
>>> to_insert = db.empty_for_insert
>>> to_insert.insert(data)
>>> to_insert.to_pandas()
foo bar
0 1 a
1 2 b
2 3 c
3 4 d
>>> to_insert.drop()
Uploading / downloading data from HDFS¶
If you've set up an HDFS connection, you can use the Ibis HDFS interface to look through your data and read and write files to and from HDFS:
>>> hdfs = con.hdfs
>>> hdfs.ls('/__ibis/ibis-testing-data')
['README.md',
'avro',
'awards_players.csv',
'batting.csv',
'csv',
'diamonds.csv',
'functional_alltypes.csv',
'functional_alltypes.parquet',
'geo.csv',
'ibis_testing.db',
'parquet',
'struct_table.avro',
'udf']
>>> hdfs.ls('/__ibis/ibis-testing-data/parquet')
['functional_alltypes',
'tpch_customer',
'tpch_lineitem',
'tpch_nation',
'tpch_orders',
'tpch_part',
'tpch_partsupp',
'tpch_region',
'tpch_supplier']
Suppose we wanted to download
/__ibis/ibis-testing-data/parquet/functional_alltypes
, which is a
directory. We need only do:
$ rm -rf parquet_dir/
>>> hdfs.get('/__ibis/ibis-testing-data/parquet/functional_alltypes',
... 'parquet_dir',
... recursive=True)
'/ibis/docs/source/tutorial/parquet_dir'
Now we have that directory locally:
$ ls parquet_dir/
9a41de519352ab07-4e76bc4d9fb5a789_1624886651_data.0.parq
9a41de519352ab07-4e76bc4d9fb5a78a_778826485_data.0.parq
9a41de519352ab07-4e76bc4d9fb5a78b_1277612014_data.0.parq
Files and directories can be written to HDFS just as easily using put
:
>>> path = '/__ibis/dir-write-example'
>>> hdfs.rm(path, recursive=True)
>>> hdfs.put(path, 'parquet_dir', recursive=True)
>>> hdfs.ls('/__ibis/dir-write-example')
['9a41de519352ab07-4e76bc4d9fb5a789_1624886651_data.0.parq',
'9a41de519352ab07-4e76bc4d9fb5a78a_778826485_data.0.parq',
'9a41de519352ab07-4e76bc4d9fb5a78b_1277612014_data.0.parq']
Delete files and directories with rm
:
>>> hdfs.rm('/__ibis/dir-write-example', recursive=True)
rm -rf parquet_dir/
Queries on Parquet, Avro, and Delimited files in HDFS¶
Ibis can easily create temporary or persistent Impala tables that reference data in the following formats:
- Parquet (
parquet_file
) - Avro (
avro_file
) - Delimited text formats (CSV, TSV, etc.) (
delimited_file
)
Parquet is the easiest because the schema can be read from the data files:
>>> path = '/__ibis/ibis-testing-data/parquet/tpch_lineitem'
>>> lineitem = con.parquet_file(path)
>>> lineitem.limit(2)
l_orderkey l_partkey l_suppkey l_linenumber l_quantity l_extendedprice \
0 1 155190 7706 1 17.00 21168.23
1 1 67310 7311 2 36.00 45983.16
l_discount l_tax l_returnflag l_linestatus l_shipdate l_commitdate \
0 0.04 0.02 N O 1996-03-13 1996-02-12
1 0.09 0.06 N O 1996-04-12 1996-02-28
l_receiptdate l_shipinstruct l_shipmode \
0 1996-03-22 DELIVER IN PERSON TRUCK
1 1996-04-20 TAKE BACK RETURN MAIL
l_comment
0 egular courts above the
1 ly final dependencies: slyly bold
>>> lineitem.l_extendedprice.sum()
Decimal('229577310901.20')
If you want to query a Parquet file and also create a table in Impala
that remains after your session, you can pass more information to
parquet_file
:
>>> table = con.parquet_file(path, name='my_parquet_table',
... database='ibis_testing',
... persist=True)
>>> table.l_extendedprice.sum()
Decimal('229577310901.20')
>>> con.table('my_parquet_table').l_extendedprice.sum()
Decimal('229577310901.20')
>>> con.drop_table('my_parquet_table')
To query delimited files, you need to write down an Ibis schema. At some point we'd like to build some helper tools that will infer the schema for you, all in good time.
There's some CSV files in the test folder, so let's use those:
>>> hdfs.get('/__ibis/ibis-testing-data/csv', 'csv-files', recursive=True)
'/ibis/docs/source/tutorial/csv-files'
$ cat csv-files/0.csv
63IEbRheTh,0.679388707915,6
mG4hlqnjeG,2.80710565922,15
JTPdX9SZH5,-0.155126406372,55
2jcl6FypOl,1.03787834032,21
k3TbJLaadQ,-1.40190801103,23
rP5J4xvinM,-0.442092712869,22
WniUylixYt,-0.863748033806,27
znsDuKOB1n,-0.566029637098,47
4SRP9jlo1M,0.331460412318,88
KsfjPyDf5e,-0.578930506363,70
$ rm -rf csv-files/
The schema here is pretty simple (see ibis.schema
for more):
>>> schema = ibis.schema([('foo', 'string'),
... ('bar', 'double'),
... ('baz', 'int32')])
>>> table = con.delimited_file('/__ibis/ibis-testing-data/csv',
... schema)
>>> table.limit(10)
foo bar baz
0 63IEbRheTh 0.679389 6
1 mG4hlqnjeG 2.807106 15
2 JTPdX9SZH5 -0.155126 55
3 2jcl6FypOl 1.037878 21
4 k3TbJLaadQ -1.401908 23
5 rP5J4xvinM -0.442093 22
6 WniUylixYt -0.863748 27
7 znsDuKOB1n -0.566030 47
8 4SRP9jlo1M 0.331460 88
9 KsfjPyDf5e -0.578931 70
>>> table.bar.summary()
count nulls min max sum mean approx_nunique
0 100 0 -1.401908 2.807106 8.479978 0.0848 10
For functions like parquet_file
and delimited_file
, an HDFS
directory must be passed (we'll add support for S3 and other filesystems
later) and the directory must contain files all having the same schema.
If you have Avro data, you can query it too if you have the full avro schema:
>>> avro_schema = {
... "fields": [
... {"type": ["int", "null"], "name": "R_REGIONKEY"},
... {"type": ["string", "null"], "name": "R_NAME"},
... {"type": ["string", "null"], "name": "R_COMMENT"}],
... "type": "record",
... "name": "a"
... }
>>> path = '/__ibis/ibis-testing-data/avro/tpch.region'
>>> hdfs.mkdir(path, create_parents=True)
>>> table = con.avro_file(path, avro_schema)
>>> table
Empty DataFrame
Columns: [r_regionkey, r_name, r_comment]
Index: []
Other helper functions for interacting with the database¶
We're adding a growing list of useful utility functions for interacting with an Impala cluster on the client object. The idea is that you should be able to do any database-admin-type work with Ibis and not have to switch over to the Impala SQL shell. Any ways we can make this more pleasant, please let us know.
Here's some of the features, which we'll give examples for:
- Listing and searching for available databases and tables
- Creating and dropping databases
- Getting table schemas
>>> con.list_databases(like='ibis*')
['ibis_testing', 'ibis_testing_tmp_db']
>>> con.list_tables(database='ibis_testing', like='tpch*')
['tpch_customer',
'tpch_lineitem',
'tpch_nation',
'tpch_orders',
'tpch_part',
'tpch_partsupp',
'tpch_region',
'tpch_region_avro',
'tpch_supplier']
>>> schema = con.get_schema('functional_alltypes')
>>> schema
ibis.Schema {
id int32
bool_col boolean
tinyint_col int8
smallint_col int16
int_col int32
bigint_col int64
float_col float32
double_col float64
date_string_col string
string_col string
timestamp_col timestamp
year int32
month int32
}
Databases can be created, too, and you can set the storage path in HDFS you want for the data files
>>> db = 'ibis_testing2'
>>> con.create_database(db, path='/__ibis/my-test-database', force=True)
>>> # you may or may not have to give the impala user write and execute permissions to '/__ibis/my-test-database'
>>> hdfs.chmod('/__ibis/my-test-database', 0o777)
>>> con.create_table('example_table', con.table('functional_alltypes'),
... database=db, force=True)
Hopefully, there will be data files in the indicated spot in HDFS:
>>> hdfs.ls('/__ibis/my-test-database')
['example_table']
To drop a database, including all tables in it, you can use
drop_database
with force=True
:
>>> con.drop_database(db, force=True)
Faster queries on small data in Impala¶
Since Impala internally uses LLVM to compile parts of queries (aka "codegen") to make them faster on large data sets there is a certain amount of overhead with running many kinds of queries, even on small datasets. You can disable LLVM code generation when using Ibis, which may significantly speed up queries on smaller datasets:
>>> from numpy.random import rand
>>> con.disable_codegen()
>>> t = con.table('ibis_testing.functional_alltypes')
$ time python -c "(t.double_col + rand()).sum().to_pandas()"
27.7 ms ± 996 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
# Turn codegen back on
con.disable_codegen(False)
$ time python -c "(t.double_col + rand()).sum().to_pandas()"
27 ms ± 1.62 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
It's important to remember that codegen is a fixed overhead and will significantly speed up queries on big data
User Defined functions (UDF)¶
Impala currently supports user-defined scalar functions (known henceforth as UDFs) and aggregate functions (respectively UDAs) via a C++ extension API.
Initial support for using C++ UDFs in Ibis came in version 0.4.0.
Using scalar functions (UDFs)¶
Let's take an example to illustrate how to make a C++ UDF available to Ibis. Here is a function that computes an approximate equality between floating point values:
#include "impala_udf/udf.h"
#include <cctype>
#include <cmath>
BooleanVal FuzzyEquals(FunctionContext* ctx, const DoubleVal& x, const DoubleVal& y) {
const double EPSILON = 0.000001f;
if (x.is_null || y.is_null) return BooleanVal::null();
double delta = fabs(x.val - y.val);
return BooleanVal(delta < EPSILON);
}
You can compile this to either a shared library (a .so
file) or to
LLVM bitcode with clang (a .ll
file). Skipping that step for now (will
add some more detailed instructions here later, promise).
To make this function callable, we use ibis.impala.wrap_udf
:
library = '/ibis/udfs/udftest.ll'
inputs = ['double', 'double']
output = 'boolean'
symbol = 'FuzzyEquals'
udf_db = 'ibis_testing'
udf_name = 'fuzzy_equals'
fuzzy_equals = ibis.impala.wrap_udf(
library, inputs, output, symbol, name=udf_name
)
In typical workflows, you will set up a UDF in Impala once then use it thenceforth. So the first time you do this, you need to create the UDF in Impala:
client.create_function(fuzzy_equals, database=udf_db)
Now, we must register this function as a new Impala operation in Ibis. This must take place each time you load your Ibis session.
func.register(fuzzy_equals.name, udf_db)
The object fuzzy_equals
is callable and works with Ibis expressions:
>>> db = c.database('ibis_testing')
>>> t = db.functional_alltypes
>>> expr = fuzzy_equals(t.float_col, t.double_col / 10)
>>> expr.to_pandas()[:10]
0 True
1 False
2 False
3 False
4 False
5 False
6 False
7 False
8 False
9 False
Name: tmp, dtype: bool
Note that the call to register
on the UDF object must happen each time
you use Ibis. If you have a lot of UDFs, I suggest you create a file
with all of your wrapper declarations and user APIs that you load with
your Ibis session to plug in all your own functions.
Working with secure clusters (Kerberos)¶
Ibis is compatible with Hadoop clusters that are secured with Kerberos (as well
as SSL and LDAP). Note that to enable this support, you'll also need to install
the kerberos
package.
$ pip install kerberos
Just like the Impala shell and ODBC/JDBC connectors, Ibis connects to Impala through the HiveServer2 interface (using the impyla client). Therefore, the connection semantics are similar to the other access methods for working with secure clusters.
Specifically, after authenticating yourself against Kerberos (e.g., by issuing
the appropriate kinit
command), simply pass auth_mechanism='GSSAPI'
or
auth_mechanism='LDAP'
(and set kerberos_service_name
if necessary along
with user
and password
if necessary) to the
ibis.impala_connect(...)
method when instantiating an ImpalaConnection
.
This method also takes arguments to configure SSL (use_ssl
, ca_cert
).
See the documentation for the Impala shell for more details.
Ibis also includes functionality that communicates directly with HDFS, using
the WebHDFS REST API. When calling ibis.impala.hdfs_connect(...)
, also pass
auth_mechanism='GSSAPI'
or auth_mechanism='LDAP'
, and ensure that you
are connecting to the correct port, which may likely be an SSL-secured WebHDFS
port. Also note that you can pass verify=False
to avoid verifying SSL
certificates (which may be helpful in testing). Ibis will assume https
when connecting to a Kerberized cluster. Because some Ibis commands create HDFS
directories as well as new Impala databases and/or tables, your user will
require the necessary privileges.
Default Configuration Values for CDH Components¶
Cloudera CDH ships with HDFS, Impala, Hive and many other components. Sometimes it's not obvious what default configuration values these tools are using or should be using.
Check out this link to see the default configuration values for every component of CDH.